第八章 8.6 8.6.3 第2课时
A 组·素养自测
一、选择题
1.如图所示,对于面面垂直的性质定理的符号叙述正确的是( D )
A.α⊥β,α∩β=l,b⊥l⇒b⊥β
B.α⊥β,α∩β=l,b⊂α⇒b⊥β
C.α⊥β,b⊂α,b⊥l⇒b⊥β
D.α⊥β,α∩β=l,b⊂α,b⊥l⇒b⊥β
[解析] 根据面面垂直的性质定理知,D正确.
2.如图所示,在长方体ABCD-A1B1C1D1的棱AB上任取一点E,作EF⊥A1B1于F,则EF与平面A1B1C1D1的关系是( D )
A.平行
B.EF⊂平面A1B1C1D1
C.相交但不垂直
D.相交且垂直
[解析] 由于长方体中平面ABB1A1⊥平面ABCD,所以根据面面垂直的性质定理可知,EF⊥平面A1B1C1D1相交且垂直.
3.如图所示,三棱锥P-ABC中,平面ABC⊥平面PAB,PA=PB,AD=DB,则( B )
A.PD⊂平面ABC
B.PD⊥平面ABC
C.PD与平面ABC相交但不垂直
D.PD∥平面ABC
[解析] ∵PA=PB,AD=DB,∴PD⊥AB.
又∵平面ABC⊥平面PAB,PD⊂平面PAB,平面ABC∩平面PAB=AB,∴PD⊥平面ABC.
4.已知直线m,n和平面α,β,若α⊥β,α∩β=m,n⊂α,要使n⊥β,则应增加的条件是( B )
A.m∥n B.n⊥m
C.n∥α D.n⊥α
[解析] 由面面垂直的性质定理知,要使n⊥β,应有n与交线m垂直,∴应增加条件n⊥m.
5.(多选)如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论错误的是( ABC )
A.平面ABD⊥平面ABC B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC D.平面ADC⊥平面ABC
[解析] 由平面图形易知∠BDC=90°.∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,且CD⊥BD,∴CD⊥平面ABD,∴CD⊥AB.又AB⊥AD,CD∩AD=D,∴AB⊥平面ADC.又AB⊂平面ABC,∴平面ADC⊥平面ABC.
二、填空题
6.平面α⊥平面β,α∩β=l,n⊂β,n⊥l,直线m⊥α,则直线m与n的位置关系是__平行__.
[解析] 因为α⊥β,α∩β=l,n⊂β,n⊥l,
所以n⊥α.又m⊥α,所以m∥n.