1.若复数z1=1+i,z2=3-i,则z1·z2=( A )
A.4+2i B.2+i
C.2+2i D.3+i
解析:z1·z2=(1+i)(3-i)=3-i+3i-i2=3+2i+1=4+2i.
2.复数z=(3-2i)i的共轭复数等于( C )
A.-2-3i B.-2+3i
C.2-3i D.2+3i
解析:∵z=(3-2i)i=3i+2,∴=2-3i.
3.若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是( D )
A.2 B.3
C.4 D.5
解析:方法一:由xi+yi2=3+4i,知x=4,y=-3,则x+yi的模为=5.