一、选择题
1.已知函数f(x)=x3-12x+8在区间[-3,3]上的最大值与最小值分别为M,m,则M-m的值为( )
A.16 B.12 C.32 D.6
C [∵f′(x)=3x2-12=3(x+2)(x-2),由f(-3)=17,f(3)=-1,f(-2)=24,f(2)=-8,可知M-m=24-(-8)=32.]
2.已知函数f(x),g(x)均为[a,b]上的可导函数,在[a,b]上连续且f′(x)
A.f(a)-g(a) B.f(b)-g(b)
C.f(a)-g(b) D.f(b)-g(a)
A [令F(x)=f(x)-g(x),∵f′(x)
∴F′(x)=f′(x)-g′(x)<0,
∴F(x)在[a,b]上单调递减,
∴F(x)max=F(a)=f(a)-g(a).]
3.若函数f(x)=x3-6bx+3b在(0,1)内有最小值,则实数b的取值范围为( )
A.(0,1) B.(-∞,1)
C.(0,+∞) D.0,12