一、选择题
1.已知平面内两定点A(-5,0),B(5,0),动点M满足|MA|-|MB|=6,则点M的轨迹方程是( )
A.-=1 B.-=1(x≥4)
C.-=1 D.-=1(x≥3)
D [由题意知,轨迹应为以A(-5,0),B(5,0)为焦点的双曲线的右支.由c=5,a=3,知b2=16,
∴M点的轨迹方程为-=1(x≥3).]
2.若ax2+by2=b(ab<0),则这个曲线是( )
A.双曲线,焦点在x轴上
B.双曲线,焦点在y轴上
C.椭圆,焦点在x轴上
D.椭圆,焦点在y轴上
B [因为ab<0,方程可化为+y2=1,∴<0,方程表示的曲线为焦点在y轴上的双曲线,故选B.]