一、选择题
1.已知函数y=f(x)为奇函数,且当x>0时,f(x)=x2-2x+3,则当x<0时,f(x)的解析式是( )
A.f(x)=-x2+2x-3 B.f(x)=-x2-2x-3
C.f(x)=x2-2x+3 D.f(x)=-x2-2x+3
B [若x<0,则-x>0,因为当x>0时,f(x)=x2-2x+3,所以f(-x)=x2+2x+3,因为函数f(x)是奇函数,所以f(-x)=x2+2x+3=-f(x),所以f(x)=-x2-2x-3,所以x<0时,f(x)=-x2-2x-3.故选B.]
2.已知f(x)是偶函数,且在区间[0,+∞)上是增函数,则f(-0.5),f(-1),f(0)的大小关系是( )
A.f(-0.5)<f(0)<f(-1)
B.f(-1)<f(-0.5)<f(0)
C.f(0)<f(-0.5)<f(-1)
D.f(-1)<f(0)<f(-0.5)
C [∵函数f(x)为偶函数,∴f(-0.5)=f(0.5),f(-1)=f(1).又∵f(x)在区间[0,+∞)上是增函数,∴f(0)<f(0.5)<f(1),即f(0)<f(-0.5)<f(-1),故选C.]