一、单选题
1.函数f(x)=(x-3)ex的单调递增区间是( D )
A.(-∞,2) B.(0,3)
C.(1,4) D.(2,+∞)
[解析] f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex,令f′(x)>0,解得x>2.故选D.
2.已知函数f(x)=xln x,则f(x)( D )
A.在(0,+∞)上单调递增
B.在(0,+∞)上单调递减
C.在(0,)上单调递增
D.在(0,)上单调递减
[解析] 函数f(x)的定义域为(0,+∞),所以f′(x)=ln x+1(x>0).当f′(x)>0时,解得x>,即函数的单调递增区间为(,+∞);当f′(x)<0时,解得0<x<,即函数的单调递减区间为(0,).故选D.