第3讲 带电粒子在复合场中的运动
考点一 带电粒子在组合场中的运动
电场+磁场
【典例1】(2020·长沙模拟)如图所示,某种带电粒子由静止开始经电压为U1的电场加速后,射入水平放置、电势差为U2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M、N两点间的距离d随着U1和U2的变化情况为(不计重力,不考虑边缘效应) ( )

A.d随U1变化,d与U2无关
B.d与U1无关,d随U2变化
C.d随U1变化,d随U2变化
D.d与U1无关,d与U2无关
【解析】选A。带电粒子在电场中做类平抛运动,可将射出电场的粒子速度v分解成初速度方向与加速度方向,设出射速度与水平方向夹角为θ,则有:
=
cos θ,而在磁场中做匀速圆周运动,设运动轨迹对应的半径为R,由几何关系得,半径与直线MN夹角正好等于θ,则有:
=cos θ,所以d=
,又因为半径公式R=
,则有d=
=
。故d随U1变化,d与U2无关,故A正确;B、C、D错误。
【多维训练】(2018·全国卷Ⅱ)一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行。一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出。不计重力。

(1)定性画出该粒子在电磁场中运动的轨迹。
(2)求该粒子从M点射入时速度的大小。
(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为
,求该粒子的比荷及其从M点运动到N点的时间。
【解析】(1)粒子运动的轨迹如图甲所示。(粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称)

(2)粒子从电场下边界入射后在电场中做类平抛运动。设粒子从M点射入时速度的大小为v0,在下侧电场中运动的时间为t,加速度的大小为a;粒子进入磁场的速度大小为v,方向与电场方向的夹角为θ(见图乙),速度沿电场方向的分量为v1。根据牛顿第二定律有