1.[2020•辽宁大连二十四中模拟]已知数列{an}的各项都是正数,n∈N*.
(1)若{an}是等差数列,公差为d,且bn是an和an+1的等比中项,设cn=b2n+1-b2n,n∈N*,求证:数列{cn}是等差数列;
(2)若a31+a32+a33+…+a3n=S2n,Sn为数列{an}的前n项和,求数列{an}的通项公式.
解析:(1)由题意得b2n=anan+1,
则cn=b2n+1-b2n=an+1an+2-anan+1=2dan+1,
因此cn+1-cn=2d(an+2-an+1)=2d2,∴{cn}是等差数列.
(2)当n=1时,a31=a21,∵a1>0,∴a1=1.
当n≥2时,a31+a32+a33+…+a3n=S2n,①
a31+a32+a33+…+a3n-1=S2n-1,②
①-②得,a3n=S2n-S2n-1=(Sn-Sn-1)(Sn+Sn-1).
∵an>0,∴a2n=Sn+Sn-1=2Sn-an,③
∵a1=1合适上式,∴当n≥2时,a2n-1=2Sn-1-an-1,④
③-④得a2n-a2n-1=2(Sn-Sn-1)-an+an-1=2an-an+an-1=an+an-1,
∵an+an-1>0,∴an-an-1=1,
∴数列{an}是首项为1,公差为1的等差数列,可得an=n.
2.[2020•四川绵阳诊断]已知等差数列{an}的公差大于0,且a4=7,a2,a6-2a1,a14是等比数列{bn}的前三项.
(1)求数列{an}的通项公式;