1.△ABC的内角A、B、C的对边分别为a、b、c,若b2=ac,c=2a,则cos C=( )
A. B.-
C. D.-
解析:选B.由题意得,b2=ac=2a2,b=a,所以cos C===-,故选B.
2.已知a,b,c为△ABC的三个内角A,B,C所对的边,若3bcos C=c(1-3cos B),则sin C∶sin A=( )
A.2∶3 B.4∶3
C.3∶1 D.3∶2
解析:选C.由正弦定理得3sin Bcos C=sin C-3sin Ccos B,3sin(B+C)=sinC,因为A+B+C=π,所以B+C=π-A,所以3sin A=sin C,所以sin C∶sin A=3∶1,选C.
3.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若sin A=,a=3,S△ABC=2,则b的值为( )
A.6 B.3
C.2 D.2或3
解析:选D.因为S△ABC=2=bcsin A,
所以bc=6,又因为sin A=,所以cos A=,又a=3,由余弦定理得9=b2+c2-2bccos A=b2+c2-4,b2+c2=13,可得b=2或b=3.
4.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若bsin A-acos B=0,且b2=ac,则的值为( )
A. B.
C.2 D.4