1.(2019·台州市高考模拟)已知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf(x)+1(x>0)的零点个数为( )
A.0 B.1
C.0或1 D.无数个
解析:选A.因为g(x)=xf(x)+1(x>0),g′(x)=xf′(x)+f(x)>0,所以g(x)在(0,+∞)上单调递增,因为g(0)=1,y=f(x)为R上的连续可导函数,所以g(x)为(0,+∞)上的连续可导函数,g(x)>g(0)=1,所以g(x)在(0,+∞)上无零点.
2.(2019·丽水模拟)设函数f(x)=ax3-3x+1(x∈R),若对于任意x∈[-1,1],都有f(x)≥0成立,则实数a的值为________.
解析:(构造法)若x=0,则不论a取何值,f(x)≥0显然成立;
当x>0时,即x∈(0,1]时,f(x)=ax3-3x+1≥0可化为a≥-.
设g(x)=-,则g′(x)=,
所以g(x)在区间上单调递增,在区间上单调递减,因此g(x)max=g=4,从而a≥4.
当x<0时,即x∈[-1,0)时,同理a≤-.