1.若数列{an}的通项公式是an=(-1)n·(3n-2),则a1+a2+…+a12=( )
A.18 B.15
C.-18 D.-15
解析:选A.记bn=3n-2,则数列{bn}是以1为首项,3为公差的等差数列,所以a1+a2+…+a11+a12
=(-b1)+b2+…+(-b11)+b12=(b2-b1)+(b4-b3)+…+(b12-b11)=6×3=18.
2.已知{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列的前5项和为( )
A.或5 B.或5
C. D.
解析:选C.设数列{an}的公比为q.由题意可知q≠1,且=,解得q=2,所以数列是以1为首项,为公比的等比数列,由求和公式可得S5=.
3.数列{an}的通项公式是an=,若前n项和为10,则项数n为( )
A.120 B.99
C.11 D.121