1.方程(x-y)2+(xy-1)2=0表示的曲线是( )
A.一条直线和一条双曲线
B.两条双曲线
C.两个点
D.以上答案都不对
解析:选C.(x-y)2+(xy-1)2=0
⇔故或
2.到点F(0,4)的距离比到直线y=-5的距离小1的动点M的轨迹方程为( )
A.y=16x2 B.y=-16x2
C.x2=16y D.x2=-16y
解析:选C.由条件知:动点M到F(0,4)的距离与到直线y=-4的距离相等,所以点M的轨迹是以F(0,4)为焦点,直线y=-4为准线的抛物线,其标准方程为x2=16y.
3.(2019·嘉兴模拟)已知点A(1,0),直线l:y=2x-4,点R是直线l上的一点,若=,则点P的轨迹方程为( )
A.y=-2x B.y=2x
C.y=2x-8 D.y=2x+4