1.(2015·全国卷Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是( A )
A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞)
C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)
解析:令g(x)=,则g′(x)=,由题意知,当x>0时,g′(x)<0,∴g(x)在(0,+∞)上是减函数.
∵f(x)是奇函数,f(-1)=0,∴f(1)=-f(-1)=0,
∴g(1)==0,∴当x∈(0,1)时,g(x)>0,从而f(x)>0;
当x∈(1,+∞)时,g(x)<0,从而f(x)<0.又g(-x)====g(x)(x≠0),∴g(x)是偶函数;
当x∈(-∞,-1)时,g(x)<0,从而f(x)>0;
当x∈(-1,0)时,g(x)>0,从而f(x)<0.